

R	keg. No:														
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR															
(AUTONOMOUS)															
B. I Ch III Year I Semester Supplementary Examinations July-2022															
(Agricultural Engineering)															
Time: 3 hours Max. Marks: 60										rks: 60					
(Answer all Five Units $5 \times 12 = 60$ Marks)															
	UNIT-I														
1	a Define the	e follo	wing t	erms.]	L1	6M
	i)Heat ii) Heat transfer														
	b Enumerate the some important areas which are covered under the discipline of								of]	L1	6M				
	heat trans	fer.						•							
2	Derive the g	eneral	heat c	onduc	tione	auatio	n in C	K Vlindr	ical c	ordin	ate		I	3	12M
4	Derive the g	liciai	neat c	onduc		quano		Γ -ΙΙ		Jorum	ate				12111
3	The inner su	irface	ofar	lane y	wall is	s at 6($0^{\circ}C$ at	nd the	over	surfac	e is a	t 35°C	. 1	.2	12M
-	Calculate the	e rate	of hea	at tran	sfer p	er m2	of su	rface	area c	of the	wall,	which	is		
	220 mm thick. Take thermal conductivity of the brick is 0.51 W/ m°C.														
							O	R							
4	a Write sho	rt note	on tra	ansien	t heat	condu	ction.						Ι	_1	6M
	b A steel ingot (large in size) heated uniformly to 745°C is hardened by							y I	_4	6M					
	quenching it in an oil bath maintained at 20°C. Determine the length of time								ie ot						
	may be approximated as a flat plate. For steel ingot take a(thermal diffusivity)									л л)					
	$= 1.2 \times 10^{-5}$	$5 \text{ m}^2/\text{s}.$			ar pra					()		
							UNIT	'-III							
5	a What is	conve	ctive	heat	transf	er? D	Disting	uish l	betwe	en fre	e and	l force	ed I	L 1	6M
	convectio	n.													
	b Derive the expression for Reynolds number and how flows are determined by								by I	L3	6M				
Reynolds number.															
6	In a straight	tube 4	of 60 ·	mm d	iamete	er. wa	ter is	x flowin	g at s	velo	city of	12 m/	's. 1	[.4	12M
J	The tube surface temperature is maintained at 70° C and the following water is							is		.					
	heated from the inlet temperature 15°C to an outlet temperature of 45°C. taking								ng						
	the physical properties of water at its mean bulk temperature, Calculate the														
	following:														

i. The heat transfer coefficient from the tube surface to the water

ii. The heat transferred iii. The length of the tube

Q.P. Code: 19ME0319

UNIT-IV

7 The flow rate of hot and cold water streams running through a parallel flow heat **12M** L4 exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures on the hot and cold sides are 75°C and 20°C respectively. The exit temperature of hot water is 45°C. If the individual heat transfer coefficients on the both sides are $650 \text{ W/m}^{2\circ}\text{C}$, calculate the area of heat exchanger.

OR

- **a** Distinguish between Boiling and Condensation. 8
 - **b** In a certain double pipe heat exchanger hot water flow at a rate of 5000 kg/h L4 **6M** and gas cooled from 95°C to 65°C. At the same time 50000 kg/h of cooling water at 30°C enters the heat exchanger. The flow conditions are that overall heat transfer coefficient remains constant at 2270 W/m² K. Determine the heat transfer area required and the effectiveness, assuming two streams are in parallel flow. Assume for the both the streams cp = 4.2 kJ/kg K

LINIT-V

	0111-7		
9	a Explain the modes of Mass transfer	L1	6M
	b Define Fick's law. Explain briefly	L1	6M
	OR		
10	Calculate the following for an industrial furnace in the form of black body and	L4	12M
	emitting radiation at 2500 °C.		
	i. Monochromatic emissive power at 1.2 µm length		
	ii. Wave length at which the emission is maximum		
	··· እለ · · ·		

iii. Maximum emissive power

iv. Total emissive power

v. Total emissive power of the furnace if the assumed as a real surface with emissivity equal to 0.9.

*** END ***

L3

6M